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Abstract

Blockchain,  SSL certificates,  HTTPS,  cryptocurrencies,  public/private  key pairs,  VPNs,  and many
other important technologies are all applications of two basic ideas from cryptography: encryption and
hash algorithms.  This  paper  explains these two ideas and shows how they have been deployed in
different combinations to create applications that drive the Internet and technologies that will shape our
economy in the future. 

Introduction

Blockchain,  SSL certificates,  HTTPS,  cryptocurrencies,  public/private  key pairs,  VPNs,  and many
other important technologies are all applications of two basic ideas from cryptography: encryption and
hash algorithms.  Although they are  mathematically  related,  they are  intended to do  very different
things. 

Encryption: An encrypted file might be publicly available, but without a key of some sort, the 
encryption cannot be reversed and the file is useless. Examples of encryption algorithms include 
AES, DES, Blowfish, and RSA. An encrypted file is referred to as ciphertext, while the 
unencrypted file is referred to as plaintext. 

Hashing: Data are run though a hashing algorithm to generate a kind of digital fingerprint. The 
point of hashing is not to hide data, but to allow verification that the data have not been tampered 
with in any fashion. A hash of a file cannot be “unhashed” back into the original file.

Encryption

Encryption is meant to keep private files private. Data can be encrypted at rest, or in transit, and
both are important. If you encrypt your home directory on your computer, then hackers will find it
difficult or impossible to access your private files. However, if you take a file off your disk, decrypt it,
and send it to a friend as an attachment via email, then the file can be read if it is intercepted. Similarly,
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if you download a file over an encrypted connection but then store it on your disk in plaintext, anyone
with access to your hard drive can read it.

At the most basic level,  encryption transforms a message or data file using an openly available
algorithm.1 The classic Transposition Cypher is the simplest example. The idea is that each letter in
the alphabet is mapped to a different letter. For example, the alphabet could be transposed one position
so that a becomes b, b becomes c, and so on. Thus, the plaintext “Local Zoo” becomes the ciphertext
“Mpdbm App”. 

Symmetric Encryption

Modern cyphers are more sophisticated, but at root, use a similar approach. Plaintext is subjected to
a series of substitutions and permutations determined by a key. A key is a string of bits of specified
length. For example, AES 256 (Advanced Encryption Standard 256) uses a 256 bit key which means
that there are 1.2 x 1077 different ways that the substitutions and permutations might be executed on
plaintext  to  produce  ciphertext.  AES-256 is  seen  as  a  completely secure  encryption  system given
current  computer  technology.2 AES-256 also has  the advantage of  being  computationally efficient,
meaning that relatively few computer clock cycles are needed to decrypt each byte of the ciphertext if
the key is known. 

Although AES is a secure system, it depends on the sender and receiver sharing knowledge of a
common key (sometimes called a “shared secret”). This is called private key encryption and is a form
of symmetric key cryptography. How can users agree on a key while keeping it secret from everyone
else? Obviously, sending the key in an unencrypted form exposes it to interception. On the other hand,
the sender cannot send the key to the receiver in an encrypted form unless the receiver has the key
needed to decrypt encrypted key. We have a chicken and egg problem. 

There are several ways to solve this. For example, users might meet in person and agree upon a key.
An even more sophisticated approach would be for users to meet in person and agree upon a book and
an algorithm such as: “Use the ASCII binary representation of the first 32 characters on the nth line of
page x where n is today's date, and x is a page number to be sent in an open email”. Unless the book the
two users choose is known to others, the page number is useless information. This system allows the
sender and receiver to securely generate a new key each time they communicate. 

Asymmetric Encryption and Public Private Keys (PPK)

Both of  these solutions depend upon users having at  least  one completely secure,  unencrypted,
exchange of information. This is impractical if users do not know in advance that they may wish to

1 Methods of encrypting data are public information. Protecting encrypted files depends on keeping the key or password 
secret, not the encryption algorithm itself. You might wonder why a file cannot be decrypted by simply inverting the 
publicly known encryption function. The reason is that the these algorithms use something called a “trapdoor function” 
which cannot be inverted. 

2 The only way to decrypt a file is to know the right key. Breaking encryption therefore requires that the key be 
discovered by brute-force guessing. Suppose that a hacker had enough computational power to make 1012 (one 
quadrillion) guesses per second. This means that the hacker could make about 3x1019 guesses per year. To have a 10% 
chance of guessing which of the 1.2x1077 possible keys was correct, the hacker would have to test 1.2x1076 keys. This 
would take approximately 4x1056 years. As far as we know, no one has this much computational power, and the universe
is only 13.7x109 years old. Thus, while it is not impossible to break AES encryption in theory, it would take more 
computing power than is likely to exist in the foreseeable future many orders of magnitude longer than the universe has 
existed to do do. This is why the National Institute of Standards and Technology (NIST) says that it is 
computationally impractical to break AES-256 encryption. 



communicate securely. For example, I may wish to send a secure email to someone I have never met,
or give a credit card number to a merchant I have never used before. 

Where it  is  impractical  for  users  to  meet  securely and agree upon a shared secret,  public  key
encryption, which is a form of asymmetric key cryptography, can be used instead. The drawback is
that decrypting text without  a shared key takes more computational effort.  As a  result,  public key
encryption is often used only to begin a secure communication session in order to send a symmetric
encryption key to be used by both sides for the remainder of the session. 

The  real  magic  of  public  key  encryption  is  that  the  public  and  private  keys  have  a  special
mathematical relationship. Not only is the private key the one and only way to decrypt a message
encrypted with the complementary public key, but the public key is the one and only way to decrypt a
message encrypted by the complementary private key.  This symmetry will turn out to be essential to
blockchain, SSL certificates, and many other applications.

At the highest level, public key encryption works like this:

1. The receiver generates two large numbers. One is called a Public Key, and is made openly 
available. The other is called a Private Key and is kept secret by the receiver.

2.  The sender uses the receiver's public key to encrypt his message. 

  3. The receiver uses his private key to decrypt the message. 

To summarize:

● Data can be encrypted at rest, in transit, or both. 

● A symmetric key can encrypt messages or documents such that anyone who has the key can
decrypt  them  at  low  computational  cost.  Without  the  key,  decryption  is  computationally
impractical. 

● Public/private  key  pairs  are  mathematically  entangled  numbers  which  can  mutually  decrypt
ciphertext created by the other. It takes more computational effort to decrypt ciphertext created
this  way,  which  is  why public  key  encryption  is  generally  used  only  to  agree  on  a  shared
symmetric key. 

● Symmetrically  and  Asymmetrically  encrypted  files  are  equally difficult  to  crack  without  the
correct key. 

Hashing

Hashing is a method used to verify the integrity of a message or file. The Hash Algorithm itself is
public knowledge and does not need any kind of key to work. When a message or file is run through a
hash algorithm it produces a fixed-length output string. The Secure Hash Algorithm-256 (SHA-256) is
one widely used approach and has the following properties:



● Running any file, regardless of length, through SHA-256 returns a 256 bit binary string.

● Very similar files produce quite different hashes in an unpredictable way. In fact, SHA-256 is
designed so that hashes of different files are, in effect, randomly and uniformly distributed3 over
the set of all possible 256 binary strings of which there are 2256 or about 1077 .

● The hash of any file is unique. The same input always produces the same output. For this reason,
the hash is sometimes referred to as a file’s “fingerprint”.

● Although hashing a file always gives the same result, two files may have the same hash. This is
called a “collision”. In practice, however, this is extremely unlikely to occur.4

● Hash algorithms are noninvertible. It is impossible to recover a file from its hash. 

Applications of Hash Functions

Verifying documents: Suppose you sign a partnership agreement and later on have a dispute. You 
and your partner both present copies of the contract to a judge, but they say different things. How 
can the judge determine which is genuine? Suppose the judge had access to a hash of the contract as 
it was on the day it was signed. He could then compare it to hashes of the contracts presented to him
by you and your partner. The genuine contract will produce the same hash, and any altered contract 
will produce something else. You may ask how the judge might have access to a hash of the contract
he knows was taken on the day it was signed. Read on about digital signatures and blockchain 
below.

Securely verifying logins: When a user tries to log into a system, the system compares the password 
the user provides to the one stored in its files. The problem with this is that the passwords stored by 
the system might be stolen by hackers. Thus, it is good security practice to store only hashes of user 
credentials. Users still type in passwords, but the system immediately takes a hash and compares it 
to the hashed password stored in its files. If the password is correct, the hashed password will match 
a stored hash. If the hashed password file is stolen from the system, it is of no use. The password 
cannot be determined from the hash, and the system requires a correct plaintext password to grant 
access, not the hash itself.

Securely resetting passwords: Sometimes when you forget a password, you can request that it be 
sent from the website to your verified email address. This is not the most secure practice since email
often transits the Internet in plaintext and can be stored on any intermediate server that passes the 
message along. However, if a website follows the practice of only storing hashes of passwords, it 
literally cannot send a user his password since it does not know it itself. This is why you sometimes 
get a message asking you to click on a one-time link that quickly expires tochoose a new password. 
This password is immediately hashed and stored. This approach relies on three things to make it 

3 Okay, not randomly; hash functions are deterministic. However, if you took a file, modified it one character at a time, 
and then looked at the distribution of the resulting hashes, they would be approximately uniformly distributed between
0 . .. 0 and 1. . . 1, where these are each 256 bit long strings.

4 Collisions must occur in theory. A typical MP3 file is tens of millions of bits long. Obviously, it is impossible to do a 
one-to-one mapping between the set of every possible 10M bit sting and every possible 256 bit string. However, If I 
took a hash of any file and then started looking for another file with the same hash, I could test 1077/2 files and still have
only a 50% chance of finding one. Thus, it is extremely unlikely that you will every actually see a collision. 



secure: that the email address has previously been validated, the use of two part authentication in 
many cases, and the fact that a hacker would have to intercept and use the link immediately while 
having access to your email account.

Data privacy: Suppose we all joined a social network and wanted to know if any of the people in our
address books had also joined. None of us, however, wanted to reveal our own email address or the 
contents of our address books to the network. We could instead submit a hashed version of our 
address books. The network would be able to see that one person's email address was in another 
person's address book by finding identical hashes. However, the network would not be able to read 
the email addresses themselves and so user privacy would be preserved.

Efficient database search: Suppose we had a database that contained names, email addresses, email 
message texts, documents, audio recording, case histories, and other large and dissimilar items. 
Suppose we wanted to find the record that contained a specific document or email message. 
Running a standard search looking that looks for an identical document in the database would be 
computationally intensive since it would require comparing data elements that are many kilobytes or
megabytes long against the document we wanted to find. We could instead create a database that 
contained hashed versions of all the data elements and search for a match with a hash of the 
document we were looking for. This would require comparing data elements that are only 256 bits 
long. The bigger the average size of the original data elements, the greater the computational savings
from searching for matching hashes. 

Applications of Encryption

   We have already discussed how symmetric  and asymmetric  encryption are used to  send secure
messages between users. The same basic technique is behind VPNs, HTTPS connections, encrypted
WiFi communications, and SSL and TLS connections. One other application deserves mention.

Cloud storage: Cloud backup services like OneDrive and Dropbox, and enterprise applications built 
on Azure or AWS, hold sensitive client data and use encryption to keep it secure. A common 
approach is to use a shared key to encrypt data that is transmuted between a client’s computer and 
the cloud service. This encrypts data in transit, but not at rest. If either the client or cloud service is 
hacked, the data are revealed. A better approach is to use a symmetric private key to encrypt data 
end-to-end. That is, encrypt the data on both the client’s computer and the cloud provider’s server, 
and only transmit data in encrypted form. This encrypts data in transit and at rest on both the local 
and cloud disks. The problem with this approach is that if the cloud service knows the shared 
encryption key, it can read your data. Even if you trust the cloud provider, a hacker may find a way 
to steal the encryption keys or a government agency may compel the provider to turn over your 
unencrypted data. Thus, an even better approach is client-side encryption which keeps the key in 
the hands of the client instead of making it a shared secret with the cloud provider. This key is used 
to encrypt data on the client’s local disk and only encrypted files are sent to the cloud server. Since 
the cloud provider does not know the private key, it is unable to read the client’s files. If the cloud 
provider is hacked, only encrypted files without keys are compromised. Even if the government 
ordered the cloud provider to turn over client data, it could only give up encrypted files. Since the 
cloud provider does not have the key, it is technologically impossible for it to turn over cleartext 
client data.

Applications that Combine Encryption and Hashing



Really interesting things become possible when encryption and hashing are used together.

Digital Signatures

Signing paper documents is the traditional way of indicating agreement or acknowledging receipt.
Signatures  can  be  forged,  so  banks  and  notary  publics  require  that  people  show  identification
documents  such  as  passports  or  driver’s  licenses.  These  documents  often  include  photographs,
signatures, physical descriptions, and even fingerprints. In effect, these documents are an attestation
by a government agency or whoever issued the document that it believes that the person named on the
ID document  is  the  same one in  the  photograph,  uses  a  signature  that  looks  like  the  one  on  the
document, has a certain fingerprint, and so on.

There are several weaknesses to this approach. First, we have to trust in the truthfulness and due
diligence of the document issuer if we are to believe its attestation. This is why banks ask for official
government IDs instead of your work ID or AAA card. Second, the document could be forged.   Third,
the ID could be stolen. These last two problems might be solved if we could request a copy or image of
the document from the issuing agency. This would make it immediately apparent if the document being
presented is forged, altered, stolen or revoked. 

In the digital  world,  public/private  key (PPK) pairs  combined with hashes can be used to sign
documents,  messages,  transactions,  and  any  other  type  of  digital  object.   Signing  and  verifying
signatures works as follows:

1. The signer produces a hash of the document.

2. The signer encrypts the hash with his private key.

3. The signer attaches this encrypted hash to the unencrypted (cleartext) document.

4. To verify the signature, the reader decrypts the hash using the signer's public key. The 
decrypted hash could only have been encrypted in this exact way by the holder of the 
complementary private key (that is, the signer). Thus, the reader knows that this is the correct
hash of the document as it was signed by the private key holder. 

5. Finally, the reader produces his own hash of the unencrypted document. If the hashes match, 
then he knows the document is exactly what was signed and has not been changed in any 
way. For this to work, the reader must have access to the public key that can decrypt the 
encrypted hash, and believe that this public key belongs to a specific person or entity. The 
reader also has to believe that the owner of the public key had control of the corresponding 
private key when the document was signed. If a hacker managed to get his hands on the 
private key, he could use it to sign documents just as easily as the true owner. Thus, if we 
think the key has not been stolen or compromised, and we are confident that we know the 
real world person or entity who owns and controls the key, then we can be equally confident 
that that person or entity signed the document verified by matching hashes. 

SSL Certificates

How can  we  verify  that  a  private  key has  not  been  stolen  or  compromised?  How can  we  be
confident that we know the true real world owner of the public key used to decrypt the hash in a digital
signature?  Just  like  physical  signatures,  we  need  some  kind  of  digital  ID  document  to  give  us



confidence that the owner of the public key is really who he claims, and that the corresponding private
key is under his exclusive control. 

We do this using the  PKI (Public Key Infrastructure). This is a system of hardware, software,
policies,  protocols  and participants  which can issue and revoke  SSL Certificates (Secure Sockets
Layer Certificates). An SSL certificate is a small file that can be attached to an email, requested from
a web or email server, or from a server set up specifically to hold SSL certificates. SSL certificates are
issued by a CA (Certificate Authority), such as VeriSign, Comodo, Globalsign, Google or Microsoft
and consist of five basic elements

● The real world identity of the certificate holder.

● A serial number and expiration date for the certificate.

● The name of the CA issuing the certificate.

● The public key of the certificate holder.

● A digital signature from the certificate-issuing authority. This includes a hashed version of the
certificate holder's public key encrypted using the certificate issuer's private key. 

 SSL certificates are used as follows: 

1. A user obtains the holder's SSL certificate. 

2. The user decrypts the hash of the holder's public key using the CA's public key (which is included 
in the CA’s signature on the holder’s SSL certificate). 

3. If the decrypted hash matches the user's own hash of the holder's public key as included in the 
certificate, then he can be sure the CA has attested that this, in fact, is the holder's public key and 
identity. 

Unfortunately, this just backs the identity verification problem up one level. If we are sure we know
the  CA's  true  public  key,  then  we are  equally sure  that  the  holder's  public  key is  the  one  in  the
certificate. But how can we be sure that we have the correct public key for the CA? The PKI is based
on what is called the web of trust. The CA who signed the certificate will also have one or more SSL
certificates from other CAs specifying its public key. The issuers of those certificates will also have
SSL certificates issued by other CAs, and so on. Provided we can find at least one CA in this chain we
believe and trust, then the rest of the structure is verified. There is no central authority in the web of
trust by design. If you cannot find a CA in the chain for whom you believe you have a correct public
key and whose honesty you trust, SSL certificates are of no help. 

The most common use of SSL certificates is to verify that the websites you visit are genuine. When I
type in the URL of my bank for example, how can I be sure that I end up at the right place? I might
have clicked through a link on an email that sends me to the wrong place or uses a DNS that has been
hacked and sends me to a fraudulent IP address. The SSL certificate allows me to be sure that I am
talking to the right URL before I send my login credentials or any confidential information. 



Blockchain

One of the most exciting uses of these technologies is blockchain. Blockchains come in many forms
and variations, but at root, a blockchain is a time-stamped, immutable, cryptographically verifiable,
distributed ledger. Let’s break this down into parts:

Ledger: Traditionally, paper ledger books have been used to keep records of account balances and
transactions of customers, ownership of property, marriages, births, deaths, and so on. Bitcoin’s 
blockchain is similar in that it contains a list of transactions in which some number of bitcoins is 
debited to one account (technically, a PPK address) and credited to another. Newer blockchains 
built on the Ethereum code base can store documents, smart contracts, and other digital objects in
flexible data structures, but these are just more complicated and useful types of ledgers.

Distributed: Blockchain ledgers are distributed in two senses. First, it is usually the case that 
information to be recorded in the ledger is submitted and processed by many different agents. For
example, any owner of bitcoins can send a request to transfer some of his holdings to another 
account using Bitcoin’s decentralized peer-to-peer network. Bitcoin's network has about 10,000 
nodes that are supposed to independently verify these transactions by making sure that the 
transactions have correct cryptographic signatures and correspond to accounts that have enough 
bitcoins to their credit to cover the requested transfers. Other blockchains are built around a 
trusted set of stakeholders such as a consortium of banks, who are allowed to submit information 
to be recorded. Second, up-to-date copies of the blockchain ledgers are usually maintained in 
several places. Copies are sometimes distributed only to stakeholders and are hidden from public 
view. Public blockchains like Bitcoin maintain ledgers that can be examined, copied and stored 
by anyone.

Verifiable: A “block” in a block chain is a collection of transactions or other data that 
accumulates over a set time interval to be recorded as a unit. In the case of Bitcoin, blocks are 
written about every ten minutes and contain 1000-2000 individual transactions.  These blocks are
added to the existing chain of blocks and contain enough data for anyone to audit and verify that 
the transactions they contain are valid, and the balances in the public key accounts are correct.  
Private blockchains are not auditable in general, but users with the correct permissions may be 
able to verify the correctness of the transactions that they are party to.

 Immutable:  At the highest level, it is difficult to rewrite transactions that are recorded in 
previously committed blocks (that is, blocks buried back in the chain) because of the way that 
they are cryptographically linked together.  We will say more about this below.  

Time-ordered:  New blocks of transactions are created sequentially and appended, or committed 
to the end of the existing blockchain.  Although this does not create a time-stamp that allows us 
to know exactly when the block was committed, it does tell us the order in which transactions 
were executed.

PPK Account Addresses

PPK pairs are at the heart of blockchain technology. Accounts kept on the ledger effectively belong
to a PPK pair. Accounts are numbered or at least include a public key to indicate ownership. There is
no record within the ledger of what human or other entity is associated with the account. Transactions
from an account require a transaction request signed by the corresponding private key. Nodes use the



public  key  in  the  account  address  to  attempt  to  decrypt  the  transaction  request,  and  if  they  are
successful, they know that the requester has access to the  required private key. If an account holder
loses his private key, it is impossible to access his account. The tokens are frozen forever and are
effectively removed from the coinbase. If another agent gains access to the private key, he can use it to
steal the tokens. From the standpoint of the validating nodes, anyone who can produce the private key
owns the tokens in the account. 

Merkle Trees

Blocks are chained together using a kind of recursive hashing technique called a Merkle tree. The
idea is ingenious, but very straight-forward. Blockchains begin with a genesis block (block 0 ) that
contains  a  ledger  of  accounts  defining  the  initial  distribution  of  tokens.  The  first  block  could  be
constructed in any number of ways depending on the protocols the blockchain uses. However it is
constructed, a set of valid transaction requests are grouped together as block 1 to be appended to the
genesis block, block 0. This is done by taking a hash of block 0 and including it in block 1.  Block 2 is
then built and a hash of block 1 included. In general, block B includes a hash of block B−1.

Now suppose that a chain has 1000 blocks and I want to go back and alter a transaction in block
600. Obviously, this changes the data in block 600 and so also changes the hash of block 600. But the
hash of block 600 is included in block 601. Anyone who wanted to could take the hash of the altered
block 600, compare it to the hash included in block 601, and thereby prove that the data in block 600
had been changed. This is called “failing the Merkle proof”. The only fix would be to include the new
hash  of  block 600 in  block 601. But  then  the  hash  of  block 601 contained  in  block  602 would  be
wrong. Thus, for the blockchain not to fail the Merkle proof, all the hashes from block 600 to block
1000 would have to be recalculated. 

What this buys us is two things. First, any attempt to alter data in  the  a blockchain is visible and
provable since the Merkle proof would fail. Second, it makes the blockchain “append only”. That is, it
is impossible to insert blocks or data into the middle of a blockchain without causing the Merkle proof
to fail. Data can only be appended to the last block.

Both of these features depend on the knowledge that the Merkle tree has not been recalculated after
data  have  been altered.  If someone takes the trouble to recalculate all  the hashes from block  600
onward, for example, he could erase evidence of his tampering. How can such a thing be prevented?

Proof of Work

The  Bitcoin  protocol  was  invented  by  Satoshi  Nakamoto.5 The  cleverest  thing  in  Nakamoto’s
protocol is the cryptographic puzzle he developed which is the foundation of Proof of Work. The idea is
the following:

Suppose we took a hash of a block we wished to append to a chain. Recall that a hash is a 256 bit
binary string that is effectively random. Thus, the probability that the first digits in the hash of any
object is 0 (instead of 1) is 50%. The odds that the first two digits are 0 is 25%. In general, the odds that

the first n digits of a hash are 0 is
1
2n . For example, the odds that a random data object would have a

hash of 00000???????… (five leading zeros) is one in 32. 

Now suppose I took my block and I added some random data to it called a “nonce” and took the

5  Satoshi Nakamoto is a pseudonym. The true author or authors of this paper are unknown.



hash again. The hash of the block with the new data would also be a random 256 bit binary number. If I
did this often enough, I would eventually find a hash that had three leading zeros. In fact, the odds of
this are one in eight. If I added random data four times and took the hash, I would have a 50% chance
of finding a hash with three leading zeros.

In the case of Bitcoin, nodes engage in a “guess and check” procedure in which they add random
data, take the hash, and see if they have found a nonce that generates a hash with n leading zeros.6 For
example, the odds of guessing at the nonce needed to generate a hash with 70 leading zeros is about
one in 1021 . There is no way to find the nonce without going through repeated guessing, hashing, and
checking.  In  other  words,  any  node  that  finds  the  nonce  must  have  expended  considerable
computational effort. There are no shortcuts.

As you can see, this makes recalculating the Merkle tree very costly. If data are changed, the nonce
is no longer valid, and so must be recalculated as well. Thus, to change transactions buried B blocks
deep in a PoW blockchain, B new nonces must be found before the Merkle tree can be recalculated and
the  Merkle  proof  made  correct  again.  This  cost  is  the  foundation  of  the  claim  that  the  Bitcoin
blockchain is "immutable". 

Other Blockchain Protocols

Proof of Work is only one approach to verifying transactions and achieving consensus over nodes
about a correct ledger state. Other approaches include Proof of Stake, Delegated Proof of Stake, Proof
of Authority, Practical and Delegated Byzantine Fault Tolerance, Distributed Acyclic Graphs, and Proof
of Honesty, to name only a few. All have their strengths and weaknesses. Broadly speaking, they share
the following elements:

● They keep copies of the ledger and transactions distributed in several locations (that is, they are
forms of Distributed Ledger Technology (DLT).

● They use cryptography techniques (mostly PPK) to verify that a user who submits a transaction
owns or is authorized to use an account.

● They use  some  sort  of  recursive  hashing  technique  to  link  current  transactions  to  historical
transactions to keep them ordered and make rewriting history difficult.

They  use  some  sort  of  consensus  or  governance  mechanism to  come  to  agreement  about  which
transactions, blocks, or chains are canonical (that is, they identify one ledger state that is definitive and
authoritative). 

Conclusion

Encryption  and  hashing  are  the  fundamental  building  blocks  of  many  of  the  essential  enabling
technologies that make the Internet, information storage and exchange, and electronic communication
and commerce possible. Developing a basic understanding of how these two cryptographic ideas work
makes it much easier to understand the key technologies that use them as a foundation. 

6  The actual Nakamoto PoW system is a bit more complicated, but this is the essential idea.
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